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proxies, solar-induced chlorophyll fluorescence, and near-infrared
reflectance of vegetation. Furthermore, the derived monthly GPP
displays two different linear relationships with soil temperature in
spring versus autumn, whereas the relationship between monthly
ER and soil temperature is best described by a single quadratic re-
lationship throughout the year. In spring to midsummer, when GPP
is most strongly correlated with soil temperature, our results sug-
gest the warming-induced increases of GPP likely exceeded the in-
creases of ER over the past four decades. In autumn, however,
increases of ER were likely greater than GPP due to light limitations
on GPP, thereby enhancing autumn net carbon emissions. Both ef-
fects have likely contributed to the atmospheric CO2 SCA amplifica-
tion observed in the ABR.

carbonyl sulfide | gross primary production | Arctic and Boreal ecosystems |
CO2 seasonal cycle amplitude | climate change

Gross primary production (GPP) is the total amount of car-
bon that is taken up from the atmosphere and converted to

sugars by plants during photosynthesis. It is the primary source of
organic matter production on Earth. GPP is also central to the
carbon cycle and for understanding carbon feedbacks to climate.
Currently, it exceeds ecosystem respiration (ER) and controls
the overall direction of land carbon sequestration on a global
scale, thus having a cooling effect on climate. However, carbon
cycle–based terrestrial feedbacks in the future have substantial
uncertainties and therefore represent one of the largest uncer-
tainties in climate projections (1). A large source of this uncer-
tainty stems from our inability to quantify GPP at large spatial
scales and our incomplete understanding of the sensitivity of
GPP to rising atmospheric CO2 concentrations and air temper-
ature (2, 3).
In the Arctic and Boreal regions, where climate warming has

been magnified by more than a factor of 2 relative to other
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In the Arctic and Boreal region (ABR) where warming is especially
pronounced, the increase of gross primary production (GPP) has
been suggested as an important driver for the increase of the
atmospheric CO2 seasonal cycle amplitude (SCA). However, the role
of GPP relative to changes in ecosystem respiration (ER) remains
unclear, largely due to our inability to quantify these gross fluxes
on regional scales. Here, we use atmospheric carbonyl sulfide (COS)
measurements to provide observation-based estimates of GPP over
the North American ABR. Our annual GPP estimate is 3.6 (2.4 to 5.5)
PgC · y−1 between 2009 and 2013, the uncertainty of which is
smaller than the range of GPP estimated from terrestrial ecosystem
models (1.5 to 9.8 PgC · y−1). Our COS-derived monthly GPP shows
significant correlations in space and time with satellite-based GPP

regions of the globe (4, 5), the growth of GPP is thought to have
contributed to an increase in the atmospheric CO2 mole fraction
seasonal cycle amplitude (SCA) observed over the northern high
latitudes (6, 7), either due to an earlier onset or lengthening of the
growing season (6, 8, 9) or enhanced carbon uptake (7, 10), al-
though increased respiration (11, 12) and transport from midlati-
tudes (13, 14) also contribute.
Despite the vital role of GPP in the carbon cycle, climate, and

food systems, its magnitudes and trends over the Arctic and
Boreal regions are poorly known. Annual GPP estimated from
terrestrial ecosystem models (TEMs) and machine learning
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methods (15, 16) differ by as much as a factor of 6 (Fig. 1 and
Table 1), and their estimated trends over the past century vary by
10 to 50% over the North American Arctic and Boreal region for
the TEMs participating in the Multiscale Synthesis and Terres-
trial Model Intercomparison Project (MsTMIP) (SI Appendix,
Fig. S1). Given this large uncertainty, the current capability for
constraining GPP on regional scales remains very limited. No
direct GPP measurements can be made at scales larger than at a
leaf level, because the basic process of GPP, which extracts CO2
from the atmosphere, is countered by the production of CO2 for
respiration. Although large-scale GPP estimates have been made
by machine learning methods (15, 16), light-use efficiency models
(17), empirical models (18), and terrestrial biogeochemical pro-
cess models (19–21) that have been trained on small-scale net CO2
fluxes measured by eddy covariance towers, they substantially
differ in mean magnitude, interannual variability, trends, and
spatial distributions of inferred GPP (22–24). Satellite remote-
sensing measurements of solar-induced chlorophyll fluorescence
(SIF) and near-infrared reflectance of vegetation (NIRv) have
been strongly linked to GPP on regional and global seasonal scales
(25–28). However, GPP estimates based on scaling of SIF and
NIRv can be limited by inconsistent and poorly constrained scaling
factors among different plant functional types (29) or can be bi-
ased from interferences of clouds and aerosols in retrievals (30).
Recently, carbonyl sulfide (COS) has emerged as a promising

new tracer for constraining large-scale GPP trends and spatial
distributions (23, 32), as COS is taken up together with CO2 by
plants during photosynthesis (33–35). Unlike CO2, for which
uptake is reversible via respiration, COS is irreversibly hydro-
lyzed inside leaves, resulting in a unidirectional plant uptake.
However, COS is a trace gas that has multiple sources and sinks.
The “missing” global source (i.e., the imbalance between total
sources and sinks) (34, 36, 37) and the poor characterization of
its various surface fluxes, whether they are related or unrelated

to photosynthetic processes (37–40), have limited the wide ap-
plication of COS for direct quantification of GPP. Furthermore,
uncertainties associated with leaf relative uptake ratios (LRUs)
between COS and CO2 (41, 42) further complicate this application.
In this study, we derive regional GPP over the North Ameri-

can Arctic and Boreal region with atmospheric COS measure-
ments and carefully consider all of these uncertainties. We used
atmospheric COS measurements from the US National Oceanic
and Atmospheric Administration (NOAA)’s Global Greenhouse
Gas Reference Network during 2009 to 2013 to directly quantify
regional GPP from inverse modeling of atmospheric COS ob-
servations over the Arctic and Boreal North America (Methods).

Fig. 1. Regional GPP for the North American ABR, estimated from bottom-up terrestrial models participating in Multiscale Synthesis and Terrestrial Model
Intercomparison Project (MsTMIP) (dashed lines), FluxCom (cyan squares with solid lines), FluxSat (green triangles with solid lines), and SiB4 (red circles with
solid lines) and our top-down atmospheric COS inversions (dark gray shading indicates the 2.5th to 97.5th of our best inversion ensemble estimates, whereas
the light gray shading denotes the range of our best ensemble estimates plus 2σ uncertainties from each inversion). The North American ABR is indicated in B.
(A) Annual GPP estimates between 2000 and 2019. (B) Multiyear average seasonal cycle of GPP from MsTMIP (2008–2010), FluxSat (2001–2019), FluxCom
(2001–2018), SiB4 (2009–2013), and this study (2009–2013). (C) Spatial distribution of GPP in July 2010 from three selected TEMs (LPJ-wsl, SiB4, and DLEM) and
average GPP from July in 2009 to 2013 derived from COS-based inversions. The spatial distribution of GPP from other TEMs is shown in SI Appendix, Fig. S12.

Table 1. Annual COS fluxes and GPP over the North American
ABR, estimated from process-based bottom-up approaches
and our atmosphere-based top-down method

Process-based estimates This study

GgS/y
Net COS fluxes −19 −28 (−38 to −20)

Anthropogenic 0.2* 0.1 (0.05 to 0.15)
Biomass burning 4.1† 1.8 (0.5 to 4.1)
Soil −3.9 (−4.2 to −3.6)† −2.8 (−4.2 to −2.2)
Plant (total) −19‡ −27 (−35 to −22)
Plant (daytime) −17‡ −23 (−30 to −18)

PgC/y
GPP 1.5 to 9.7§ 3.6 (2.1 to 6.2)

The uncertainty ranges from this study include the full ensemble plus 2σ
errors derived from individual inversions.
*From Zumkehr et al. (31).
†Methods.
‡From SiB4.
§From MsTMIP, SiB4, FluxCom (15), and FluxSat (16).
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We estimated an ensemble of 54 time and space varying esti-
mates of GPP using the daytime portion of plant COS uptake de-
rived from each inversion and then converted to GPP using LRUs
(Methods). The ensemble was generated considering three different
representations of COS mole fractions in air entering the model
domain (SI Appendix, Fig. S2) (so called “background mole frac-
tions”) that were presubtracted from atmospheric mole fraction
observations before the inversions, multiple representations of an-
thropogenic and biomass burning emissions, soil fluxes, and LRUs
(Methods). Here, we discuss the implications of the inferred mag-
nitudes, spatial and seasonal variation, and trends of COS fluxes
and GPP over a region that has experienced accelerated warming
relative to the lower latitudes during the past few decades.

Results and Discussion
COS Fluxes. Atmospheric COS observations over the Arctic and
Boreal North America reflect a strong dominance of surface up-
take signal, indicated as negative vertical gradients in the aircraft
profiles and surface depletions in COS mole fractions relative to
those measured in the free troposphere or upwind background
atmosphere, especially during summer and fall (June through
September) (Fig. 2 and SI Appendix, Fig. S3). As a result, the
derived annual net COS fluxes estimated from atmospheric COS
inversions were −28 (−38 to −20) GgS · y−1 between 2009 and
2013 over the Arctic and Boreal North America (Table 1), with
the largest uptake in June through September (SI Appendix, Fig.
S4). The uncertainty in the derived net COS fluxes indicated
above includes not only the 2σ statistical uncertainty derived from
each individual inversion but also the range of estimates derived
using different background estimations. Note that the estimated
regional net flux is relatively insensitive to the prior assumptions in
the inverse modeling analysis, as the result was fairly consistent,
even when we used a prior with no flux variations in space or time
(a “flat” prior) (SI Appendix, Fig. S4).

The atmosphere-derived net COS flux is primarily dominated
by plant uptake of COS. The derived annual plant uptake from
atmospheric COS inversions was −27 (−35 to −22) GgS · y−1, given
the range of anthropogenic, biomass burning, and soil fluxes we
considered (Table 1 and Fig. 3 and SI Appendix, Figs. S5 and S6).
The estimated plant COS uptake shows a strong seasonal cycle with
near-zero flux in winter and a flux of −110 to −60 GgS · y−1 in
summer (Fig. 3 and SI Appendix, Figs. S5 and S6). This plant COS
uptake is composed of daytime and nighttime plant uptake (Fig. 3
and SI Appendix, Fig. S5). Although the daytime COS plant uptake
is directly linked to photosynthetic activities, nighttime plant uptake
of COS is not associated with photosynthesis and is likely due to
incomplete closure of stomata that leads to light-independent COS
hydrolysis catalyzed by the enzyme carbonic anhydrase (40, 42, 43).
If total COS plant uptake is converted to GPP without dis-
tinguishing daytime versus nighttime fluxes, GPP would be over-
estimated by 5 to 15% in April through September and 30 to 50%
in October through March over the North American Arctic and
Boreal region (Fig. 3 and Table 1 and SI Appendix, Fig. S5).
The derived annual mean plant uptake of COS from atmo-

spheric observations, −27 (−35 to −22) GgS · y−1, is about 40%
higher than simulated by the TEM Simple Biosphere Model
version 4.2 (SiB4) (Table 1). The plant COS uptake simulated by
SiB4 is close to the lower limit of plant COS uptake inferred
from atmospheric observations between January and August and
is smaller than the lower limit during September to December
(Fig. 3). A forward model analysis using plant COS fluxes sim-
ulated by SiB4 would overestimate the atmospheric COS mole
fractions all year around and especially during fall (SI Appendix,
Figs. S7 and S8), whereas simulations with posterior fluxes de-
rived from our COS inversions show improved agreement with
atmospheric observations with a stronger correlation and smaller
biases (SI Appendix, Figs. S7 and S8).

Fig. 2. NOAA’s atmospheric COS mole fraction observations in the mid and high latitudes of North America. (A) Regular flask-air samples from towers (daily
and weekly) and aircraft flights (biweekly to monthly). Color shading indicates average footprint sensitivity (in a log10 scale) of COS observations to surface
fluxes during 2009 to 2013. (B) Seasonal average aircraft profiles at sites above 40°N (Left and Right: December to February, March to May, June to August,
and September to November). Black symbols represent observed median mole fractions within each season and each altitude range with error bars indicating
the 25th to 75th percentiles of the observed mole fractions. Colored dash lines denote median mole fractions of three different background (upwind) es-
timates in each season.
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GPP. The COS-based monthly GPP derived from multiplying the
daytime COS plant fluxes with LRUs (Methods) shows significant
correlation with the contiguous SIF (CSIF) (44) and the Moderate
Resolution Imaging Spectroradiometer NIRv (26) (Fig. 4A) over
the North American Arctic and Boreal region in both space and
time at a 99% CI. The correlation coefficients between the COS-
derived monthly total GPP and monthly area-weighted average
CSIF and NIRv are 0.92 and 0.95 on a regional scale (Fig. 4C).
Their spatial correlations are greater than 0.7 when aggregating
GPP, CSIF, and NIRv to 2° × 2° or higher. The timing for the start
of the seasonal cycle (SOS) and end of the seasonal cycle (EOS) is
similar between the COS-based GPP and monthly area-weighted
CSIF for all 5 y considered in this study (Fig. 4). Although the SOS
of NIRv is similar to the COS-based GPP estimates and CSIF, the
EOS of NIRv is about 1 mo delayed (Fig. 4).
We also found agreement between our COS-based GPP to

GPP estimated from available eddy covariance flux towers in our
domain. Because of the sparse atmospheric COS measurement
network in this region, inversion fluxes on a grid scale are highly
uncertain (SI Appendix, Fig. S9). Hence, we don’t expect to be able
to constrain fluxes at the fine spatial scale to which flux towers are
sensitive and do not compare fluxes at single-flux towers. Instead,
we extracted and averaged monthly fluxes at 15 1o × 1o grid cells
in which there is a GPP estimate reported from flux towers in the
FLUXNET and AmeriFlux networks over the North American
Arctic and Boreal region. Our atmospherically derived GPP
generally agrees well (90% of the time) with eddy covariance flux
tower inferred average GPP (SI Appendix, Fig. S10), further sup-
porting the validity of our COS-based approach.
Our best estimate of annual total GPP was 3.6 (2.4 to 5.5) PgC

· y−1 over the Arctic and Boreal North America between 2009
and 2013 (Fig. 1), considering the 2.5th–97.5th percentile of 5-y
average annual total GPP from the 36 ensemble members. Here,
the 36 ensemble members only include the ones estimated from
a temporally varying LRU approach (Methods). This is because
when we consider a temporally constant LRU approach (1.68 for
C3 plants and 1.21 for C4 plants), the correlation between the
COS-derived monthly total GPP and monthly area-weighted

average CSIF and NIRv was slightly lower. Annual GPP de-
rived using a constant LRU approach is biased high by 10 to 70%
than when derived from temporally varying LRU values due to
higher GPP in the early morning and late afternoon during late
spring through summer and all times during fall through early
spring (SI Appendix, Fig. S11). This finding is consistent with a
previous study (41) that considers eddy covariance measure-
ments of CO2 and COS. Hereafter, we only discuss the 36 GPP
ensemble estimates derived from the two temporally varying
LRU approaches. If we consider the 2σ error from each en-
semble member, the full uncertainty of our COS-based annual
GPP estimate would be 2.1 to 6.1 PgC · y−1. The uncertainty of
our GPP estimate is about half of the GPP range estimated from
terrestrial models over this region (1.5 to 9.7 PgC · y−1) (Table 1
and Fig. 1). Annual GPP estimates from terrestrial models such
as the Lund-Potsdam-Jena Wald Schnee and Landshaft model
(LPJ-wsl), the BioGeochemical Cycles model (BIOME-BGC),
the Global Terrestrial Ecosystem Carbon model (GTEC), the
Simple Biosphere/Carnegie-Ames-Stanford Approach (SiB-
CASA), and FluxSat are close to or higher than the upper limit
of our COS-based annual GPP estimates, whereas the the Dy-
namic Land Ecosystem Model (DLEM) simulation is near the
lower limit (Fig. 1). In particular, our results suggest that TEMs
such as LPJ-wsl and BIOME-BGC likely overestimate the annual
GPP magnitudes and the seasonal cycle, provided that GPP from
these two models are much larger than the upper limit of our
annual estimate, and our uncertainty estimate considers a large
range of possible errors associated with the COS-based inference
of GPP. In contrast, GPP simulated by TEMs such as the Orga-
nizing Carbon and Hydrology in Dynamic Ecosystems model
(ORCHIDEE), SiB4, the Community Land Model version 4
(CLM4), the Integrated Science Assessment Model (ISAM),
version 6 of the Terrestrial Ecosystem Model (TEM6), the TRI-
PLEX-GHG model, the Vegetation Global Atmosphere Soils
model (VEGAS), and FluxCom shows similar annual magnitudes
(Fig. 1A) and seasonal variation (Fig. 1B) as derived from atmo-
spheric COS observations; among these TEMs, ORCHIDEE and
SiB4 display spatial distributions most similar to that derived from
COS in July (SI Appendix, Figs. S12 and S13) with the smallest
root mean square errors (RMSEs) and the strongest correlations
with COS-derived GPP. Note that GPP simulated using SiB4 is
not independent from our COS-observation-based GPP estimate,
given that the SiB4-simulated COS fluxes were used in the con-
struction of the prior COS flux for our inversions (Methods).

Implications. In the past seven decades, the increase of surface
temperature in the Arctic has been more than two times larger
than in lower latitudes (4, 5). During this period, observations
suggest a concurrent increase in the SCA measured for atmospheric
CO2 mole fraction in the northern high latitudes that is about a
factor of 2 larger than the increase of SCA of atmospheric CO2
observed in the tropics. This has been primarily attributed to in-
creasing GPP (7, 9, 10, 45) and respiration (11, 12) in the northern
mid- and high latitudes (46). However, the magnitudes of increases
in GPP and respiration and their relative contributions to the en-
hanced high-latitude CO2 mole fraction SCA have been uncertain.
The only way to further understand this problem is to first establish
a robust capability for separately and accurately quantifying GPP
and ER that are representative of a large regional scale.
With COS-derived regional GPP estimates for the North

American Arctic and Boreal regions, we calculated regional ER
by combining GPP with net ecosystem exchange (NEE) derived
from our previous CarbonTracker-Lagrange CO2 inversion (47)
(Fig. 5). The derived regional monthly total ER is slightly smaller
than regional monthly total GPP during late spring through
summer, although the magnitude of their difference is not sta-
tistically significant considering their uncertainties (Fig. 5). The
monthly total ER is significantly higher than GPP during mid-fall

Fig. 3. Multiyear average monthly COS fluxes between 2009 and 2013 from
anthropogenic sources, biomass burning, and plant and soil fluxes used and
derived from this study for the North American ABR. (Upper) Multiyear av-
erage monthly anthropogenic COS fluxes (blue lines), biomass burning COS
fluxes (red lines), soil COS fluxes (green shading), and plant COS fluxes
simulated from SiB4 (black dashed line) and derived from this study (gray
shading). Multiple lines with the same color indicate multiple different es-
timates. (Lower) The daytime and nighttime plant uptake derived from this
study (a red solid line with light red shading and a blue solid line with light
blue shading) and from SiB4 (red and blue dashed lines).
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through mid-spring (Oct through Apr). Correlation coefficients
between monthly total GPP and monthly total ER across all
seasons is 0.93.
Interestingly, the seasonal cycle and spatial distribution of our

atmosphere-based monthly estimates of GPP and ER over the
North American Arctic and Boreal region show strong correla-
tions with air temperature and soil temperature (Fig. 5). The
correlation coefficient between monthly total GPP and area-
weighted average air or soil temperature is >0.89 during April
through November (the start to end of the GPP seasonal cycle). If
we further divide the GPP seasonal cycle into an increasing phase
(April through July) and a decreasing phase (August through
November), the slope between GPP and soil temperature during
the decreasing phase is slightly larger than during the increasing
phase (Fig. 5B), likely due to a strong limitation of solar radiation
on GPP in autumn (Fig. 4B). Here, we used the downward
shortwave radiation flux to examine the availability of solar radi-
ation over this region. In April through July, the correlation be-
tween GPP and solar radiation is relatively low (r = 0.67) (SI
Appendix, Table S1) compared to the correlation between GPP
and air or soil temperature. When removing the effect of the
covariation between radiation and temperature, the partial cor-
relation (48) between GPP and solar radiation becomes statisti-
cally insignificant for April through July, whereas the partial
correlation between GPP and air or soil temperature is statistically
significant at a 95% CI even when solar radiation is controlled (SI

Appendix, Table S2). This is because starting in January, solar
radiation begins increasing over this region. By April, the average
solar radiation in this region has already increased to two-thirds of
its annual maximum (Fig. 4B and SI Appendix, Fig. S14). Solar
radiation is likely no longer a limiting factor in plant growth over
this area, whereas plant growth is more restricted by temperature
in April, especially by soil temperature. This is further supported
by a strong correlation between soil temperature in April and the
SOS of GPP (r = 0.98) (SI Appendix, Fig. S15). As the year con-
tinues, solar radiation reaches its maximum in June and starts to
decrease thereafter. By September, the first month after GPP
starts to decrease, the average solar radiation has dropped below
the level in April, whereas air and soil temperatures are compa-
rable to those in July (Fig. 4 and SI Appendix, Fig. S14). Thus, the
decreasing regional total GPP in August through November is
likely strongly driven by limited and decreasing solar radiation.
This is further supported by stronger correlation between GPP
and solar radiation in August through November (r = 0.95). De-
creasing solar radiation further results in declining air temperature
and soil temperature, which will further facilitate the decrease of
GPP in the fall. Although soil moisture is also at the minimum in
August through September, it is not likely to be the dominant
factor governing the decrease of GPP in the fall. This is because
when soil moisture increases in the fall, there is a continued de-
crease of GPP. However, GPP and soil moisture are indeed

Fig. 4. Comparison of COS inversion-estimated GPP with the CSIF (46), NIRv (24), soil temperature (Soil Temp), and downward shortwave radiation flux
(DWSRF). (A) Spatial maps of monthly GPP derived from atmospheric COS observations, CSIF, and NIRv averaged between 2009 and 2013 for January, April,
July, and October. (B) Monthly estimates of GPP estimated from COS inversions and monthly area-weighted average CSIF, NIRv, Soil Temp, and DWSRF over
the North American ABR, averaged between 2009 and 2013. The dark gray shading indicates the 2.5th to 97.5th percentile range of the best estimates from
our inversion ensembles, whereas the light gray shading indicates the range of our inversion ensemble estimates plus 2σ uncertainties from each inversion.
The black symbols connected by a black line denote multiyear average monthly mean GPP from all COS ensemble inversions. (C) Scatter plots between COS-
based monthly GPP estimates and monthly area-weighted average CSIF or NIRv over the North American ABR for all months of the year. (D) The calculated
SOS and EOS inferred from CSIF and NIRv versus the SOS and EOS indicated by COS-based GPP between 2009 and 2013. The values at 5% or 10% above their
seasonal minima relative to their seasonal maxima were used as thresholds for calculating the SOS or EOS in each year (Methods).
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anticorrelated in this analysis (SI Appendix, Tables S1 and S2),
likely due to loss of soil water through transpiration.
The seasonal cycle of ER derived here is most strongly cor-

related with temperature, especially soil temperature (SI Ap-
pendix, Table S1). Unlike GPP, the ER–temperature relationship
we derived is not influenced by solar radiation (Fig. 5), as it falls
into one quadratic relationship for all months. After temperature
and radiation, GPP and ER anti-correlate with snow cover and
positively correlate with precipitation (SI Appendix, Table S1), but
their correlations are due to the covariations of snow cover and
precipitation with temperature (SI Appendix, Fig. S14). When the
effect of their covariation was removed, the partial correlations of
snow cover and precipitation with GPP and ER were statistically
insignificant (SI Appendix, Table S2). A strong temperature con-
trol of carbon dynamics in the northern high latitudes has been
suggested in earlier studies with satellite remote-sensing–based
land observations (11, 22, 45, 49, 50). Our results suggest that
both temperature and solar radiation are important in regulating
carbon fluxes in northern high-latitude terrestrial ecosystems.
To estimate the impact of past changes in climate on the

seasonal cycle of GPP, ER, and NEE in the North American
Arctic and Boreal region, we first built empirical models to
simulate the seasonal cycle of GPP and ER with climate vari-
ables and inversion results during 2009 through 2013 (Methods).
The best empirical model to simulate monthly regional total
GPP among the 30 empirical models we considered is a linear
model between GPP and soil temperature for April through July
and between GPP and solar radiation for August through No-
vember (SI Appendix, Table S3), whereas monthly regional total
ER can be best simulated with a quadratic relationship with soil
temperature (SI Appendix, Table S4) (Methods). Liu et al. (50)
demonstrated that the relationship between the fraction of
Photosynthetically Active Radiation (fPAR) and temperature is

relatively constant in the northern high latitudes over the past
several decades. Because fPAR strongly influences GPP (50), we
also assumed here that the empirical relationship between the
seasonal cycle of GPP and ER with climate variables derived for
2009 through 2013 holds over time. We then estimated the likely
changes in the climatological seasonal cycle of GPP and ER from
1979 through 1988 to 2010 through 2019 based on the long-term
changes of soil temperature and solar radiation over the North
American Arctic and Boreal region. From 1979 through 1988 to
2010 through 2019, the annual soil temperature increased by
0.5 K with larger warming in autumn (September through De-
cember) (Fig. 5). The autumn soil temperature rise (∼1 K) is
equivalent to ∼8% of the SCA of the area-weighted average soil
temperature over the North American Arctic and Boreal region
(Fig. 5). Our analysis suggests that the increase of soil temper-
ature directly enhances ER, especially in autumn, whereas it
results in an increase of GPP in spring through early summer
(Fig. 5). Because GPP is more sensitive to temperature changes
in April through July than ER (Fig. 5B), the enhancement of
GPP exceeds the increase of ER in spring through early summer
due to warming in the past several decades (Fig. 5), resulting in
an earlier onset of the growing season and increased net carbon
uptake. In autumn, as regional GPP is largely limited by solar
radiation and solar radiation has increased much less than soil
temperature relative to their SCA (SI Appendix, Table S1), the
warming-induced increase of GPP is less than ER during this
season (Fig. 5), which can cause an earlier zero-crossing day for
NEE and an increase in net carbon emission in autumn over this
region. These phenomena have already been observed in atmo-
spheric CO2 measurements made at Barrow, Alaska (11, 12). The
increases in net carbon uptake in April through July could lead to
a larger cumulative CO2 uptake flux from the atmosphere and a
deeper seasonal minimum in atmospheric CO2 mole fractions,

Fig. 5. The atmosphere-based estimates of the multiyear average seasonal cycle of GPP, ER, and NEE and estimation of their warming-induced seasonal cycle
amplification over the North American ABR. (A) Multiyear average monthly GPP, ER (“Resp” as labeled in the figure), and NEE between 2009 and 2013 over
the North American ABR. The solid lines represent the ensemble means, whereas the color shadings indicate their uncertainties. (B) Relationship between
monthly GPP and ER derived from this study and monthly area-weighted soil temperature (Soil Temp) over North American ABR. The solid lines represent a
linear fit between GPP and soil temperature for April to July (red) and August to November (green) and a quadratic regression between ER and soil tem-
perature for all months. (C) Estimated increases of GPP, ER, and NEE from 1979 to 1988 and 2010 to 2019 over the North American ABR. The color shading
represents our estimation errors, constructed from 100 ensemble empirical relationships of GPP/ER with Soil Temp and DWSRF, considering the uncertainty of
our monthly GPP and ER estimates shown in A. (D) Annual Soil Temp and DWSRF (Left) and monthly Soil Temp and DWSRF increases between 1979 and 1988
and 2010 and 2019. The error bars represent the sum of SEs of the monthly means between 1979 and 1988 and 2010 and 2019. The monthly increases of Soil
Temp and DWSRF and their errors were normalized relative to the average SCA in 1979 and 1988.
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whereas the enhancement of net carbon releases in August
through December would lead to a larger cumulative CO2 emis-
sion and an increase of maximum in atmospheric CO2 seasonal
cycle. Both effects would add to the enhanced SCA of atmo-
spheric CO2 in the northern high latitudes. Furthermore, our es-
timated increase of annual GPP is less than the increase of annual
ER between 1979 through 1988 and 2010 through 2019, indicating
the temperature rise over the past decades resulted in an overall
enhancement of net carbon release to the atmosphere due to the
autumn limitation of light on the warming-induced growth of GPP.
Provided other factors do not become limiting, as the Arctic con-
tinues to warm, additional net carbon uptake in spring and net
carbon release in autumn would amplify the atmospheric CO2 SCA
in the northern high latitudes additionally. If the warming continues
to be more prominent in the dormant seasons, such warming might
be expected to lead to increased net carbon emission and a positive
climate feedback over this region.
These estimates of long-term warming-induced changes on

GPP and ER in North American Arctic and Boreal region are
derived on the basis of seasonal sensitivities of these fluxes to soil
temperature and solar radiation during 2009 through 2013, as-
suming that these seasonal relationships are relevant for informing
us about trends over decadal periods. With the probable CO2
fertilization effect (51–53), the expansion of Arctic vegetation
(54), and shifts of vegetation types driven by interactions of cli-
mate warming and fire (55), the overall increases of GPP and ER
in the Arctic have likely been greater than that estimated here;
however, such effects have been challenging to quantify, largely
due to an inability to constrain regional-scale GPP. However, our
study provides evidence for the usefulness of atmospheric COS
observations for estimating large regional-scale GPP over the
Arctic and Boreal area, despite the limitation of the current at-
mospheric COS sampling network in this region. Furthermore,
our results suggest that future expansion of this observing system
could afford us opportunities for direct quantification of interan-
nual variability and trends of GPP and ER, thereby enhancing our
understanding of the carbon cycle–climate feedback loops in this
important region of the world.

Methods
Atmospheric COS Observations. The NOAA Global Monitoring Laboratory has
beenmeasuring atmospheric COSmole fractions in flask-air samples collected
from 13 locations around the globe since 2000, with five sites located in North
America. In 2006, North American COS measurements were augmented to
include daily flask-air samples collected from 11 to 16 tower locations and
every 2 to 4 wk at 16 regular aircraft profiling sites between 0 and 8 km above
ground for determination of dry-air mole fraction of COS and other trace
gases. Details on NOAA’s COS flask-air sampling locations can be found at
https://www.esrl.noaa.gov/gmd/dv/site/?program=hats&active=1.

The North American portion of NOAA flask-air sampling is based primarily
on programmable flask packages (PFPs) composed of 12 0.7-L borosilicate
glass flasks (56, 57). Once filled with sample air, PFPs are shipped to our
Boulder, CO, laboratory and analyzed by one dedicated Gas Chromatography
and Mass Spectrometry (GCMS) instrument (called “M2,” which was later
upgraded to “PR1” in September 2014). Median analysis precision for M2 COS
measurements during 2009 to 2013 was ∼1 ppt (picomole COS per mole dry
air); in 95% of the analyses, it was less than 6 ppt. Long-term reproducibility of
the flask measurements is roughly 6 ppt. This long-term reproducibility was
determined by repeated measurements for air samples drawn from a suite of
archived air tanks throughout the measurement record period.

Samples from our 13 global stations (five in North America) were collected
in individual borosilicate flasks (2.2 L) or electropolished stainless steel (SS)
flasks (2.5 to 3 L) (34). These flask-air samples were analyzed by another
dedicated GCMS instrument (called “M1,” which was upgraded to “M3” in
mid-2009). Prior to mid-2009, the median replicate injection precision for
COS at ambient levels with our instrumentation was 0.4%; 95% of the time
it was <1.3% (i.e., <6.3 ppt). After mid-2009, median replicate precision was
0.2%, and 95% of the time, it was <0.75%.

Because we used atmospheric COS measurements that were primarily
made by two different GCMS instruments (M1/M3 and M2) and different
sampling flask types (PFPs and individual glass or SS flasks), any differences

associatedwith different sampling flask types or analytical systems need to be
corrected to avoid measurement differences biasing inversion fluxes. We
compared COS measurements made from PFPs versus individual SS flasks
collected at Park Falls, Wisconsin. The mean ratio of COS mole fractions
measured in air collected in these two different types of flasks when sampled
within 1 d of each other is 1.001 (n = 140; 1 σ = 0.045), indicating no statistical
difference between measurements from both types of flasks (SI Appendix, Fig.
S16). Furthermore, we have compared results from a subset of flask-air sam-
ples collected from our global network that were analyzed on both of the
GCMS instruments. Their mean ratios of COS mole fractions measured by M3
and M2 between 2009 and 2013 is 0.998 (n = 319; 1 σ = 0.012) except with up
to a 2% difference in 2012 to 2013 (SI Appendix, Fig. S17). To ensure a con-
sistent measurement scale, we correct all the M2 measurements to the M3
scale to be consistent with data used in previous COS publications (32, 34).

Regional Inverse Modeling of Atmospheric COS Mole Fraction Observations.We
converted the COS mole fraction information measured by atmospheric
measurements to surface COS fluxes using a regional inverse modeling system,
CarbonTracker-Lagrange-COS, CT-L-COS. The CT-L-COS modeling system is
modified and adapted from the CarbonTracker-Lagrange CO2 inverse model-
ing framework (47). CT-L uses the high-resolution Weather Research and
Forecasting–Stochastic Time-Inverted Lagrangian Transport (WRF-STILT) model
(58) to quantify the relationship between COS mole fraction enhancements or
depletions to upwind fluxes. It solves for 8 scaling factors per wk for each 1° ×
1° grid cell flux, one for each 3-hourly time of day (i.e., a weekly average
adjustment to the diurnal cycle). Different from the CT-L CO2 system, we
augmented the inversion domain to include ocean grid cells adjacent to the
North American land (SI Appendix, Fig. S2). We did this to include the influ-
ence of oceanic fluxes to the atmospheric observations near the coast and
reduce edge effects, as oceanic COS emissions are significant in the atmo-
spheric COS budget (59). Because of the expansion of the inversion domain
and increases in the spatial dimension of the state vector in the inversion, we
had to reduce the batch inversion window from 1 y to 6 mo to make the batch
inversion more computationally manageable. In each batch inversion, we
discarded the first and last month of fluxes to remove potential “end effects”
in those two months.

The prior 1° × 1° net COS fluxes included in the COS inversion were
computed based on a linear combination of inventory- or process-based
estimates of anthropogenic COS emissions (31), biomass burning emissions
(60, 61), ocean fluxes (62), and terrestrial ecosystem fluxes (plant and soil
fluxes) from the SiB4 (63) (SI Appendix, Fig. S6). The sector-based linear
scaling factors (β) (SI Appendix, Fig. S6) were calculated based on a method
similar to the calculation of drifting coefficients in the deterministic model in
a geostatistical inverse modeling framework (64–66) (Eq. 1).

β = (XTHTΨ−1HX)−1XTHTΨ−1z, [1]

where X is a matrix with sector-based COS fluxes; H denotes WRF-STILT
footprints; Ψ = HQHT + R, in which R and Q represent the model–data mis-
match covariance matrix and the prior flux error covariance matrix; and z
represents COS mole fraction deviations at North American continental sites
relative to the upwind background atmosphere. We further used the Bayesian
Information Criterion (BIC) (65, 66) to score a few possible combinations of
sector-based COS fluxes and assess the necessity for the inclusion of all COS
fluxes in the inversion domain. Our results suggest that consideration of all
possible COS fluxes from within the inversion domain (from terrestrial eco-
systems, anthropogenic sources, biomass burning, and ocean) best represents
the observed COS variability in the atmosphere than neglecting any minor
fluxes. We also considered using population density to represent the spatial
distribution of anthropogenic fluxes of COS. However, the BIC test suggests
using the anthropogenic COS fluxes constructed from Zumkehr et al. (31) is
superior to using population density, as they better represent the atmospheric
observations along with fluxes from other sectors. Furthermore, we also tested
inversions conducted without scaling the sector-based fluxes, but this resulted
in a poorer fit between simulations and observations in posterior fluxes than
the inversion results considering scaling the sector fluxes.

With inversely modeled net COS fluxes and their uncertainties at each grid
cell, we then subtracted the original or scaled fluxes from anthropogenic
sources, biomass burning, and soil fluxes (described below) of COS to derive
plant COS fluxes. Fluxes and flux uncertainties were aggregated to the North
American Arctic and Boreal region by considering the posterior covariances in
space and time for each inversion.

Background COS Mole Fraction Estimation. Background COS mole fractions
were first subtracted from atmospheric observations to derive COS mole
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fraction enhancement or depletion relative to the background atmosphere
before the grid-scale inversion was performed. We used three different
empirical methods similar to our previous inversion analyses for other at-
mospheric trace gases (47, 66–68) to derive COS background and evaluate
the possible systematic biases in each individual background estimate (1).
The first background approach (“bg_ht”) considers COS mole fractions di-
rectly measured from the background atmosphere. This approach uses data
collected from 0 to 1 km above sea level at remote marine locations and free
tropospheric data that have low surface sensitivity from aircraft observa-
tions (https://www.esrl.noaa.gov/gmd/dv/site/?program=hats&active=1) to
build a three-dimensional (3D) background field as a function of time, lati-
tude, and altitude. To construct the 3D background field, we first divide data
into three different vertical levels: 0 to 1 km, 2 to 5 km, and 5 to 8 km. A
long-term trend and average seasonal cycle were fit with a function con-
taining polynomial and harmonic terms to create a smoothed curve at each
site and altitude bin (69). Interannual variability in the seasonal cycle, cal-
culated from the detrended and deseasonalized residuals, was then added
to the smoothed curve. Gap filling was performed based on the average
seasonal cycle at each site and altitude bin. By fitting data extracted from
the smoothed curve as a function of sine of latitudes at synchronized time
steps from all sites, we built an evenly spaced and time-synchronized back-
ground surface across all latitudes for each altitude bin. The constructed
background surfaces for the three altitude bins were further linearly inter-
polated between altitudes to get background estimates at a finer vertical
resolution. From this 3D background, we extracted background COS mole
fraction based on the sampling time, latitude, and altitude for each obser-
vation itself (2). The second background approach (“bg”) considers the 3D
background mole fractions built from the first approach and the WRF-STILT
back-trajectories (47). Each background estimate for each observation is the
average value of the sampled COS mole fractions from the 3D field at lati-
tude, altitude, and time in which the 500 back-trajectory particles last exited
the North American continent (SI Appendix, Fig. S2) horizontally or vertically
(above 5 km above sea level). Any trajectories terminating within the con-
tinental boundary layer were assigned with a latitude- and altitude-
dependent value from the 3D background field. This approach has the ad-
vantage of considering atmospheric transport and vertical mixing, but it may not
capture synoptic variability, and it lacks an accurate representation of the conti-
nental boundary layer (3). The third background approach (“bg_corr”) considers
possible biases in the second approach due to under-representation in the 3D
background itself, especially in the continental boundary layer, and transport un-
certainties. In this approach, we consider any observations with summed footprints
less than 1 ppt/(pmol m−2 s−1) as background observations (47). We calculated the
mean difference between observed and estimated background for this subset of
observations by season, by altitude (0 to 3 km, 3 to 6 km, and 6 to 8 km), and by
region (i.e., Arctic and Boreal North America, western temperate North America
[130° to 108°W], midtemperate North America [108° to 86°W], and eastern tem-
perate North America [86° to 64°W]. We then used this mean seasonal difference
and applied a correction on our estimated background from the second approach
by season, altitude, and region. The overall difference in the estimated background
from these three approaches is shown in SI Appendix, Fig. S3.

Estimating Soil COS Fluxes. Soil COS fluxes were estimated by three different
methods: 1) Soil COS fluxes were simulated by SiB4 (63) and 2) Soil COS fluxes
were generated based on the empirical COS soil flux relationship with soil
temperature and soil moisture (38) and the meteorological fields from the
North American Regional Reanalysis. This empirical estimate was scaled to
match the COS soil flux magnitude observed at Harvard Forest, Massachusetts
(42). 3) Soil COS fluxes were also approximated as inversion-derived nighttime
COS fluxes. Because it was observed that soil fluxes accounted for 34 to 40% of
total nighttime COS uptake in a Boreal Forest in Finland (43), we assumed a
similar fraction of soil fluxes in the total nighttime COS fluxes in the North
American Arctic and Boreal region and similar soil COS fluxes in the day as the
night. Soil fluxes derived from these three different approaches yielded an
estimate of −4.2 to −2.2 GgS/y over the North American Arctic and Boreal
region, accounting for ∼10% of the total ecosystem COS uptake.

Estimating GPP. The daytime portion of plant COS fluxes from multiple in-
version ensembles (considering uncertainties in background, anthropogenic,
biomass burning, and soil fluxes) was converted to GPP based on Eq. 2:

GPP = −FCOS

LRU
Ca,CO2

Ca,COS
, [2]

where LRU represents leaf relative uptake ratios between COS and CO2. Ca,CO2

and Ca,COS denote ambient atmospheric CO2 and COS mole fractions.

Daytime here is identified as when PAR is greater than zero. LRU was esti-
mated with three approaches: in the first approach, we used a constant LRU
for C3 and a constant LRU for C4 plants compiled from historical chamber
measurements. In this approach, the LRU value in each grid cell was calculated
based on 1.68 for C3 plants and 1.21 for C4 plants (37) and weighted by the
fraction of C3 versus C4 plants in each grid cell specified in SiB4. In the second
approach, we calculated temporally and spatially varying LRUs based on Eq. 3:

LRU = Rs−c[(1 + gs,cos

gi,cos
)(1 − Ci,c

Ca,c
)]−1, [3]

where Rs−c is the ratio of stomatal conductance for COS versus CO2 (∼0.83);
gs,COS and gi,COS represent the stomatal and internal conductance of COS;
and Ci,C and Ca,C denote internal and ambient concentration of CO2. The
values for gs,COS, gi,COS, Ci,C, and Ca,C are from the gridded SiB4 simulations. In
the third approach, we scaled the simulated SiB4 LRU to better match chamber
measurements under strong sunlight conditions (PAR > 600 μmolm−2 s−1)
when LRU is relatively constant (41, 42) for each grid cell. When converting
COS fluxes to GPP, we used surface atmospheric CO2 mole fractions simulated
from the posterior four-dimensional (4D) mole fraction field in Carbon Tracker
(CT2017) (70). We further estimated the gridded COS mole fractions based on
the monthly median COS mole fractions observed below 1 km from our tower
and airborne sampling network (Fig. 2). The monthly median COS mole frac-
tions at individual sampling locations were extrapolated into space based on
weighted averages from their monthly footprint sensitivities.

Constructing and Evaluating the Empirical GPP and ER Models. To establish an
empirical relationship of GPP and ER seasonal cycle with climate variables, we
considered 30 different empirical models for GPP (SI Appendix, Table S3) and 10
empirical models for ER (SI Appendix, Table S4) with different combinations of
climate variables. We used the climate data from the North American Regional
Reanalysis for this study. To select the best empirical model, we divided the
atmosphere-based monthly GPP and ER estimates into one training set and
one validation set. We used 4 y of monthly inverse estimates as our training set
and 1 y of monthly inverse estimates as our independent validation set. We
then iterated this process for five times; each time, we selected a different year
as our validation set and the rest as our training set. In each iteration, we
evaluated the performance of the empirical models by calculating the BIC
score for the training set and RMSEs and correlations between simulated and
inversely modeled monthly GPP or ER for the independent validation set. The
reason to use a BIC score rather than using RMSE and correlations for the
training set is that BIC not only considers how well the model fits the data but
also applies penalties for adding additional fitting variables to avoid over-
fitting. The BIC score of each empirical model can be calculated from Eq. 4:

BIC = −2L + p ln(n), [4]

where L represents the log likelihood of the model, p represents the number
of coefficients that need to be derived from the empirical model, and n
denotes the number of data in the training set.

Assuming the errors between empirically simulated and inversely modeled
monthly fluxes are a Gaussian distribution, we calculated the coefficients of
each empirical model based on the least-squares method. The log likelihood
of each model was calculated from Eq. 5:

L = −n
2
ln(2π) − nln(s) − 1

2s2
∑n
i=1

(yi − ysim,i)2 , [5]

where y represents the inversely modeled GPP or ER; ysim denotes the sim-
ulated GPP or ER with the empirical model; and s represents the SD of the
errors between y and ysim.

For models with the same number of fitting parameters or coefficients, the
lower the BIC score is, the larger the likelihood that the model is (Eq. 4). The
BIC scores for the training sets and RMSE and r2 for the validation sets are
presented in SI Appendix, Tables S3 and S4, which are the average BIC score
and average RMSE and r2 among the five iterations.

The best empirical model to simulate monthly regional total GPP among
the 30 empirical models we considered is a linear model between GPP and soil
temperature for April to July and between GPP and solar radiation for August
to November (SI Appendix, Table S3), whereas monthly regional total ER can
be best simulated with a quadratic relationship with soil temperature (SI
Appendix, Table S4). The RMSE and r2 between the atmosphere-derived and
empirically simulated multiyear average seasonal cycle are 0.8 PgC · y−1 and
0.96 for GPP, whereas they are 0.7 PgC · y−1 and 0.94 for ER (SI Appendix, Fig.
S18). We then extrapolate the selected empirical models to estimate changes
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in the seasonal cycle of GPP and ER due to long-term changes of tempera-
ture and radiation over the North American Arctic and Boreal region.

Calculating the Timing for the SOS and EOS. The SOS and the EOS for the COS-
based GPP, CSIF, and NIRv were calculated based on when these variables in-
creased or decreased to a threshold each year. Here, we defined this threshold as
a 5 to 10% increase between the monthly minimum and maximum GPP, CSIF,
and NIRv averaged between 2009 and 2013.

Data Availability. NOAA atmospheric COS observations used in this analysis
are available at https://doi.org/10.15138/q82j-7x17. Modeled footprint data
are available at ftp://aftp.cmdl.noaa.gov/products/carbontracker/lagrange/

footprints/ctl-na-v1.1. Inversely modeled fluxes and SiB4 fluxes are accessible
at https://doi.org/10.15138/q82j-7x17. The SiB4 model code can be accessed
at http://sib.atmos.colostate.edu/. Inverse modeling code is available at
https://doi.org/10.15138/70v3-8344.
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